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Abstract

Both the U.S. Environmental Protection Agency (EPA) and the American Society for Testing and Materials (ASTM) provide
guidance for selecting statistical procedures for ground water detection monitoring at Resource Conservation and Recovery Act
(RCRA) solid and hazardous waste facilities. The procedures recommended for dealing with large numbers of nondetects, as may
often be found in data for volatile organic compounds (VOCs), include, but are not limited to, Poisson prediction limits (in both the
EPA guidance and ASTM standard) and Poisson tolerance limits (EPA guidance only). However, many of the proposed applications
of the Poisson model are inappropriate. The development and application of the Poisson-based methods are explored for two types
of data, counts of analytical hits and actual concentration measurements. Each of these two applications is explored along twe lines
of reasoning, a first-principles argument and a simple empirical fit.

The application of Poisson-based methods to counts of analytical hits, including simultaneous consideration of multiple VOCs,
appears to have merit from both a first principles and an empirical standpoint. On the other hand, the Poisson distribution is not
appropriate for modeling concentration data, primarily because the variance of the distribution does not scale appropriately with
changing units of measurement. Tolerance and prediction limits based on the Poisson distribution are not scale invariant. By chang-
ing the units of observation in example problems drawn from EPA guidance, use of the Poisson-based tolerance and prediction lim-
its can result in significant errers. In short, neither the Poisson distribution nor associated telerance or prediction limits should be
used with concentration data. EPA guidance does present, however, other, more appropriate, methods for dealing with concentration
data in which the number of nondetects is large. These include nonparametric tolerance and prediction limits and a test of propertions

based on the binomial distribution.

Background and Introduction

During the past 10 years, statistical analysis of ground water
quality monitoring data from solid and hazardous waste disposal
facilities has become routine. The goal of such analyses is most com-
monly to assess whether or not a contaminant release is likely to
have occurred. This is done by objectively comparing water qual-
ity observations from two groups: a “compliance” group which
would presumably be impacted by a release from the facility; and
a “background” group which would be identical, or at least statis-
tically very similar, to the compliance group, but would not be
impacted by a release. The compliance group consists of observa-
tions collected from wells downgradient of the facility after oper-
ation has begun. The background group consists of observations that
are collected from wells upgradient of the facility (interwell com-
parisons) or from the same wells used in the compliance group but
prior to facility operation or before any impacts have occurred
(intrawell comparisons),

Guidance for selection of statistical procedures appropriate for
such monitoring is provided by the EPA (U.S. EPA 1989, 1992) and
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more recently by ASTM (American Society for Testing and
Materials 1996). The EPA and ASTM recommendations have ben-
efited from several research efforts and numerous articles in the sci-
entific literature (which are cited in the aforementioned refer-
ences). Most certainly, they have come a long way from the early
recommendations based on a particular form of the Student’s t-test
and, in general, provide sound advice, invaluable to practitioners.
Current guidance recognizes particularly troublesome characteris-
tics of ground water monitoring data, notably non-normality and the
presence of large numbers of nondetects, sometimes comprising the
majority of the data. An excellent review of the pertinent literature
is presented by Davis and McNichols (1994a, 1994b).

The procedures recommended for dealing with large num-
bers of nondetects include, but are not limited to, Peisson predic-
tion limits (in both the EPA guidance and ASTM standard) and
Potsson tolerance limits (EPA guidance only). Both of these pro-
cedures are based on the work of Gibbons (1987). Both tolerance
and prediction limits may be constructed from background data for
the purpose of determining whether future observations are likely
to have come from a different population and might thus suggest
possible contamination. Both types of limits may be used in either
interwell comparisons or intrawell comparisons.

Tolerance limits define intervals which contain a portion of the
population (coverage) greater than or equal to a specified fraction
with specified probability (confidence level). Prediction limits
define intervals which contain each of k future observations (k may
be varied) from a given population with a specified confidence level.
For both tolerance and prediction limits, parametric procedures based
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on a normality assumption as well as nonparametric procedures are
presented in EPA and ASTM guidance. The parametric procedures
are recommended if the data are normally distributed or normality
can be achieved by a suitable transformation and/or correction for
nondetects. The nonparametric procedures would be recommended
for most other cases, including data sets with large numbers of non-
detects. However, the nonparametric procedures have the limitation
that the upper tolerance or prediction limit can be no greater than
the largest observation in the background data set, and one cannot
compute limits with large confidence levels and smail background
sample sizes. The Poisson-based procedures represent a third alter-
native that does not have this limitation.

The Poisson-based procedures are purported to have several
desirable properties, including the ability to deal with high fractions
(>90%) of nondetects, to include the magnitudes of observations
above the detection limit, and to combine observations for several
different VOCs into a single test. However, as demonstrated in this
paper, some of the proposed applications of the Poisson model are
seriously fauity. The EPA guidance contains alternative methods that
are better suited for dealing with the problem of large numbers of
nondetects, and these are reviewed at the end of this paper.

There are two possible lines of reasoning to develop arguments
in favor of applying the Poisson distribution and associated meth-
ods in ground water quality monitoring. The first of these is a
first-principles approach in which the events of concem are con-
sidered to be rare events that are outcomes of multiple Bernoulli (two
possible outcomes) trials. Under certain conditions, the number of
outcomes of each type in a given number of trials may be modeled
exactly by a binomial distribution, for which the Poisson is a good
approximation (again under certain conditions}. This is the primary
line of reasoning employed by Gibbons (1987). The second is an
ernpirical approach in which the distribution of observed data is com-
pared to a Poisson distribution and a good empirical fit is found in
certain cases.

Each of these lines of reasoning may be applied to two types
of data. The first data type is simply a count of the number of ana-
lytical “hits” or observations above the detection limit out of a given
number of analyses. Gibbons (1987) suggests using the Poisson dis-
tribution to model *hits/scan,” in which a scan is an analysis of a
single water sampie for multiple {perhaps 20 to 50) VOCs, and the
number of hits is the number of compounds for which the measured
concentration is above the detection limit. The second type of data
is actual concentration measurements for each analysis, i.e., for each
VOC in each scan, many of which could be recorded as nondetects
or “less-thans.” As shown later, there are at least some problemns with
each line of reasoning and each type of data. Extremely serious prob-
lems occur with actual concentration data using either line of rea-
soning,.

Analysis

Applications of the Poisson Distribution

The Poisson distribution is a discrete distribution often used to
model rare events. Classic example applications include modeling
radiation counts observed at a detector over a fixed interval of
time or modeling the number of individuals who contract cancer out
of a large study group of fixed size, say 1000. In the latter exam-
ple, each individual result is the outcome of a Bernoulli trial,
meaning that there are two possible outcomes (the individual will
contract cancer or will not contract cancer) with probabilities p and
(1-p), respectively. If p (the probability than an individual will
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contract cancer) is constant across all trials, then the number of indi-
viduals who contract cancer out of a sample of size n individuals
is modeled exactly by a binomial distribution with parameter p.

The Poisson distribution is a useful approximation to the bino-
mial distribution when the number of trials, n, is large and the
binomial parameter, p, the probability of the event of interest, is
small. The Poisson distribution has a single parameter, usually
denoted as A, which is often called the rate parameter. For a given
Poisson distribution, this parameter is both the mean and the vari-
ance. Thus the standard deviation of a Poisson distribution is
always equal to the square root of the mean. When the Poisson dis-
tribution is used to approximate the Binomial distribution, the
Poisson parameter is equal to np. Ott (1993) indicates that, when
np is less than 3, the Poisson distribution is a good approximation
to the binomial distribution. It is easy to show that the Poisson dis-
tribution may be a good approximation to the binomial for larger
values of np as well, but this criterion will suffice for the present dis-
cussion.

Poisson probabilities are given by (Dwass 1970):

Me *
X!

p(X) = (N

where X equals 0, 1, 2, 3, ...; p(X) is the probability that the
Poisson random variable will take on a given value, X; and & is the
Poisson parameter.

As an example application of the Poisson distribution, suppose
that several similar groups of individuals of fixed size (say 1000)
are drawn from an infinite population. Let us suppose also that the
“true” fraction of individuals in the infinite popuiation whe contract
cancer is 0.002. In this case, the distribution of the number of
individuals who contract cancer in each group is described exactly
by a binomial distribution with parameter p = 0.002. For a study
group of size 1000, the Poisson distribution should be a good
approximation to this “exact” binomial model since n is large, p is
small, and np is less than 5. The value of the Poisson parameter, X,
is np = 2 which is the average (mean) number of individuals who
contract cancer per study group of 1000,

The sum of m independent Poisson random variables with para-
meter A is also Poisson with parameter mA (Dwass 1970). Thus the
mean and variance must scale linearly with the size of the abserved
sample. The standard deviation scales with Vm.

In the previous example, suppose now that the groups consist
of 2000 individuals rather than 1000. This can be viewed either as
a single Poisson random variable with n = 2000 or the sum of m =2
Poisson random variables, each with n = 1000, In the first case, we
obtain the mean = A = np = 2000(0.002) = 4. In the second case, we
obtain the new value of A (for n = 2000) as twice the value of A for
n=1000o0r 2(2) =4.

The new variance, for n = 2000, would alsc be equal to 4. Thus,
the standard deviation would be 2. The standard deviation does not
scale linearly, and the coefficient of variation (standard deviation
divided by the mean) gets smaller as the number of individuals in
the sample gets larger. This makes intuitive sense in this example.
Since the event being observed is rare, we would expect large
variability (coefficient of variation) in observed occurrences of
cancer when the study group is small and reduced variability when
the study group gets large. This line of thought applies equally well
10 radiation counts. If we double the time of observation, the mean
particle count will double, and so will the variance. The coefficient
of variation will decrease by a factor of 1/V2.



Modeling Analytical Hits Using the Poisson Distribution

The same model could be used to describe the number of
detects, or *‘hits,” for a given number of analyses when certain con-
ditions apply. As stated previously, one could atternpt to justify the
use of a Poisson model using either 2 first-principles argument or
an empirical fit of the data.

First let us consider the first-principles argument. Each analy-
sis can be regarded as a Bernoulli trial. The two possible out-
comes are detect (or hit) and nondetect. If the trials are independent
and the probability of a hit, p, is constant over all trials, then the num-
ber of hits out of n trials is modeled exactly by a binomial distrib-
ution with parameter p. The Poisson distributien is a good approx-
imation when the number of (independent) analyses is large and the
probability of a hit, p, on a given irial is small {(np<5) and is con-
stant from analysis to analysis. If we are considering a large num-
ber of analyses for a single compound by the same laboratory and
method, then these conditions probably apply. However, as Davis
and McNichols (1988) point out in a comment on Gibbons (1987},
both of the assumptions of constant p and independence are likely
to be violated in the hits/scan application where multiple com-
pounds are considered simultaneously. Cenainly, the probability of
a hit is not the same for different compounds, and if one compound
is detected, then other detections are more likely. This would seem
to invalidate a first-principles argument for application of the
Poisson distribution unless we restrict ourselves to one compound
at a time. However, it follows from the results of LeCam {1960) (see
also Feller 1970, page 286) that a Poisson model provides a good
approximation for the sum of n Bernoulli random variables, even
with unequal p values, provided that the p values are all small, and
n is large, as long as the independence assumption is valid. For mod-
est correlation between trials the approximation may still be satis-
factory. Therefore, the first-principles argument might have some
validity after ail.

Even if the first-principles argument is not particularly strong,
one could still make the case for modeling detects or hits/scan
based on an empirical fit of the data. In the reply to Davis and
McNichols (1988), Gibbons (1988) presents one example data set
that fits the Poisson model nicely. The data set includes 127 scans
of 32 VOCs each.

Modeling Concentrations Using the Poisson Distribution

As mentioned eariier, the Poisson distribution is purported
by Gibbons (1987), U.S. EPA (1992), and ASTM (1996) to be
useful for modeling actual concentrations in addition to modeling
numbers of hits, Gibbons bases this contention on a molecular
argument which is creative but not rigorous. Problems with this argu-
ment were correctly pointed out by Davis and McNichols (1988).
However, their argument in favor of a continuous (normal) distri-
bution was not fully developed due to the need for brevity in their
comment. Using a first-principles argument we shall show that,
under reasonable assumnptions, the “true concentrations” of a pol-
Iutant follow an approximately Poisson distribution. However, the
Poisson parameter must be determined with some care. Gibbons’
(1987} development is not correct. -

Suppose that there are an infinite number of molecules (water
molecules, VOC molecules, etc.) in the population of interest and
that a fraction p of these molecules are those of a pollutant of
interest. Suppose we select a sample of n molecules. If X denotes
the number of molecuies of the pollutant of interest in this sample
of n molecules, then, under reasonable assumptions, X may be mod-
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Figure 1. Probability of a sample containing exactly 40 ppb of con-

taminant vs. the totai number of molecules N (in billions) in the water
sample when the true population concentration is 34.75 ppb.

eled using a binomial distribution with parameters n and p. In sit-
uations one encounters in practice, n is very large, and p is very
small, so a Poisson distribution with A = np may be expected to pro-
vide an adequate approximation for this binomial distribution. For
the present application, np is many orders of magnitude greater than
5, and as Ot (1993) and Davis and McNichols (1988) point out, a
normal distribution actually provides a better approximation than
a Poisson. However, we will continue our discussion using a
Poisson approximation. Notice that the approximating Poisson
distribution has parameter A = np. The value of n depends, of
course, on the volume of water sampled. For | mL samples of water,
the value of n will be approximately 3 X 10?2 since there are 18
grams/mole and 6.02 X 10** molecules/mole. If the concentration
of the pollutant in the population is 1 ppb, then p = 107 (neglect-
ing the difference in mass between a VOC molecule and a water
molecule), and A is approximately 3 x 103, With this value of A,
which takes into account the actual number of molecules per sam-
ple, the true numbers of molecules of the pollutant in a randomly
selected sample will follow, approximately, a Poisson distribu-
tion. (As pointed out earlier, a normal distribution will provide an
even better approximation, but the difference in fit between the two
distributions turns out to be negligible for the number of molecules
of interest here.)

This reasoning is precisely what Gibbons (1987) calls the
“molecular argument.” The critical point in our development of this
molecular argument is that the value of A, and thus the mean and
variance of the distribution, depends on the number of molecules
present (i.e., the volume) in the water sarnple. If we double the sam-
ple volume, we doubie the value of A, thus doubling the mean and
variance.

However, Gibbons' (1987} development of the molecular argu-
ment missed this critical point, thus failing to correctly identify the
parameter ) of the approximating Poisson distribution. In an exam-
ple illustrating the use of the Poisson model, Gibbons notes that the
average concentration of pollutants per sample is 34.75 ppb. He then
proceeds to use a Poisson distribution with A = 34.75 to model the
concentrations in individual samples. For instance, he states that the
probability of a sample with a concentration of 40 ppb is equal to

(34.75)% 47
o = 004
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Using the correct molecular argument developed here, the
value to use for A is np where n is the total number of molecules per
sample, and p is the pollutant fraction of the total population. If the
true or population concentration is 34.75 ppb, then p = 34.75 X 10-5.
For simplicity, let N = the number of molecules present in billions.
Then A = 34.75 N. A sample with a pollutant concentration of 40 ppb

will then have 40N molecules of the pollutant. Therefore, the cor-

(34.75N) N = 345N
(40N)!

be calculated only when N, the size of the water sample, is known,

because the probability definitely depends on N as it should.

Figure 1 shows how this probability changes as N takes on differ-

ent values.

As an aside, notice that as the value of N increases, the prob-
ability rapidly but asymptotically approaches zero. In a sample con-
sisting of an extremely large number of molecules, the probability
will be miniscule that the number of molecules of the pollutant wilk
equal one specified value, Therefore, it doesn’t make sense to talk
about the concentration being exactly equal to some specified
value. It makes sense only to speak of the concentration being
within a specified range of values.

What are the consequences of Gibbons’ (1987) error of incor-
rectly specifying the value of A in the Poisson approximation?
They are quite serious as the next example shows,

Suppose that the average (mean) concentration of lead in a large
number of samples is 1 part per million (mg/L). We can permit most
of these observations to be nondetects without loss of generality.
Following Gibbons' (1987) development, if the observations are
really Poisson distributed, then the variance of the observations must
also be 1 with units of (mg/L)?, and the standard deviation is | mg/L.
Suppose now that we do nothing other than change the units of the
measurement to parts per billion (micrograms/L or ug/L). The
mean is then 1000 with units of pg /L , and if the Poisson distrib-
ution applies, the variance must be 1000 with units of (ug /L)% The
standard deviation is v1000 or about 32 pug /L or 0.032 mg/L in the
original system of units. The standard deviation has changed by a
factor of 30 simply because we have used a different system of units.
Obviously this cannot be. The mean and variance cannot be depen-
dent on the units used. A basic criterion that any model must meet
is that it be independent of the system of units, and the Poisson
model does not meet that criterion.

One might argue that this problem could be overcome by
always using the same system of units such as g/L. In this case, an
observation of 1 ng/L. would be represented as a value of 1076
with units of g/L. However, the Poisson is a discrete distribution,
and one cannot have fractions such as 10 in the Poisson distrib-
ution, only integer counts. Thus all Poisson measurements must be
represented as integers with appropriate units. Furthermore, there
is no system of units which will give the correct results since the
molecular argument depends not only on the concentration but
also on the size of the sample.

As noted earlier, this scaling problem results from improper
specification of the rate parameter A. If the parameter is specified
properly by considering the number of molecules present, then
the mean and variance will scale properly (i.e., the mean will
remain constant, but the variance will decrease with increasing num-
ber of molecules in the sample). Furthermore, the result will not
depend on the system of units used—an absolute requirement. In
short, concentration measurements are continuous and represent-

rect Poisson probability is given by . This can
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Table 1

Benzene Concentrations (ppb) from Six Background Wells
Month Welll WellZ Well3 Welld Well5 Well6
1 <2 <2 <2 <2 <2 <2
2 <2 <2 <2 15.0 <2 <2
3 <2 <2 <2 <2 <2 <2
4 <2 12.0 <2 <2 <2 <2
5 <2 <2 <2 Q <2 10.0
6 <2 <2 <2 <2 <2 <2

ing them as discrete counts using the Poisson distribution creates
the scaling problem that we have described.

Role of Measurement Errors

Even if the parameter A is correctly specified based on the num-
ber of molecules actually present in the sample, a correct “molec-
ular” argument based on first principles does not lead to a useful
model for observed concentration data. Remember that we are
thus far considering only the “true” concentration of VOCs or
other poilutants in the water sample. The variance that is predicted
by the Poisson model is due only to randomness in the number of
pollutant molecules from sample to sample. This variance must be
equal to A for the Poisson model and is vanishingly small for real
samples. As discussed previousty, if the sample volume is 1 mL, then
the number of water molecules present is approximately 3 X 102,
and A is of the order of 10" for concentrations in the range of a few
ppb. Thus, the variance of the concentration measurements is of the
order of 10" (molecules/mL)?, and the standard deviation is of the
order of 107 (molecules/mL} which is of the order of 10" mole-
cules/molecule or 10-7 ppb.

This demonsirates that the variance associated with the Poisson
model and molecular argument is many orders of magnitude smaller
than what we actually observe in real data. The reasons for this are
fairly obvious. In practice, measured concentrations will differ
from the true concentration due to analytical and other errors. If Y
is the true concentration of a pollutant in a given sample, then we
have the relation

Y=X+e 2)

where e denotes measurement error. Even if a Poisson model is a
reasonable one for modeling X, it is certainly not the distribution
to use 1o model Y. Furthermore, when one examines the sampling
varjability of Y, one finds that, for typical concentrations of pollu-
tants and sizes of the sample, most of the variability in Y occurs due
to the measurement errors. Given that the distribution of X is ade-
quately modeled using a normal distribution rather than a Poisson,
and that measurement errors are often normally distributed, one can
see that a normal distribution is likely o provide a reasonable
model for Y and that a Poisson model is highly unreasonable.

Errors in Poisson Tolerance and Prediction Limits

We have shown that a first-principles or molecular argument
does not lead 1o a practical model for real concentration data which
include analytical errors, We have shown that using this model with-
out considering the number of molecules in the sample creates an
obvious scaling problem in which the variance is not constant
across different systems of units. Thus, we would expect the results
of tolerance and prediction limit calculations to be dependent on the



system of units used, which would be unacceptable. That this, in fact,
occurs is easily demonstrated by example.

Example—Errors in Poisson Prediction Limit

We shall consider two sample data sets from the current EPA
guidance (U.S. EPA 1992). First let us consider the prediction
limit calculadon of Example 10 on page 35. Benzene data from six
background wells are reproduced in Table 1. The objective is to com-
pute an upper 99% prediction limit for the sum of the next four
observations for a single downgradient well assuming the same
(Poisson) distribution.

According 1o U.S. EPA (1992) and Gibbons (1987), an upper
prediction limit for the sum of the next k observations from the same
population is given by

. ct? I £
Ti=cT,+ 5+ cq/'r,,(l + E) +s 3)

T,* = the total Poisson count of the next k observations

T, = the sum of the Poisson counts of n background samples

¢ =kin

t = the upper l-o quantile point of the Student’s t distribution
with n-1 degrees of freedom.

where

If we think carefully about the application of this equation to con-
centration data, a serious problem becomes apparent. The first
term will have concentration units; the second terms has no units;
and the third term has concentration units mixed with a term that
has no units. So if we change the system of units, we get a differ-
ent answer.

In the example problem, all of the background wells are
assumed to represent the same population, and the data are pooled.
Therefore, n = 36, of which 33 are nondetects, k =4, and ¢ = 4/36
= 1/9. To compute T,, all of the nondetects are set equal to half the
detection limit or 1 ppb. Thus T = 33(1.0) + 12.0 + 15.0+ 10.0 =
70.0. Using statistical software or a table of the Studentfs t distri-
bution we find t g9 ;5= 2.4377. Substituting these values into the
above we obtain

2 L]
(2.4377) o 24377

(2.4377)
2(9) 9 34

T = 5(70) + \/70(1 +9) +

= 15.3 ppb

which is the result obtained in U.S. EPA (1992).

If we change the units from ppb to parts per 100 million
(pphm), so that 12.0 ppb becomes 1.2 pphm, then the upper 99%
prediction limit for the sum of the next k = 4 observations changes
from 15.3 ppb to 3.4 pphm or 34 ppb as shown here,

(2.4377%

24377 \/ (24377 _
20) + - 7001 +9) + — - 3.4 pphm

T = %(7.0) +

The answer has changed by a factor of 2 using the very same data.
Similarly, if we change the units to parts per ten billion (pptb)
so that 12.0 ppb becomes 120 pptb, then the upper 99% prediction
limit becomes 100.8 pptb or 10.1 parts per billion. After this change
in units, all of the observations are still integers and could be con-
sidered Poisson “‘counts.” However, the final result is much different
from the original. The difference in the result due to units alone is
unacceptable and indicates that the method is faulty.

Example—Errors in Poisson Tolerance Limit

Next, let us consider the tolerance limit calculation of Example
12 on page 40 of the EPA guidance document. This example uses
the same data as the preceding example. The objective here is to
compute an upper Poisson tolerance limit with 95% coverage and
a 95% confidence level. In the guidance document the calculations
follow the method presented by Gibbons (1987) and proceed as fol-
lows.

First calculate the most probable rate parameter using the fol-
lowing equation from Zacks (1970):

1,
A, = 50 %3 2T, + 2] @

where T_ is the sum of the Poisson counts of n background sampies
(with nondetects set equal to half of the detection limit}); ¥2, is the
A quantile of the chi-squared distribution with (2T, +2) degrees of
freedom; and A is the desired confidence level.

For this example, k = (.95, and the most probable rate para-
meter is given by

1,
Ar, = o5 Kases [142] = 2.37

Next, compute twice the probable occurrence rate as 2 )\Tn =
4,74,

The upper tolerance limit is then given by the least positive inte-
ger, k, such that

Gop 2k + 2= 20 (5

where [2k+2] = the degrees of freedom of the chi-squared distrib-
ution and f = the desired coverage.

Since we wish to obtain 95% coverage, 1-B = 0.05. Therefore,
using a chi-squared table or statistical software, one finds the
smallest degrees of freedom, (2k+2), such that

s 2k + 212 2(2.37) (6)

From the table we find that %2[11] = 4.57 and ¥*{12] = 5.23.
Thus, the smallest degree of freedom which satisfies the inequal-
ity (Equation 6) above is 12. Therefore, [2k+2] =12, so thatk = 5,
and the upper Poisson tolerance limit with 95% coverage and 95%
confidence level is 5 ppb, which is the result obtained in U.S. EPA
(1992).

Now, as in the prediction limit problem, let us see what hap-
pens if we change the units, It is difficult to carry out the calcula-
tions if the order of magnitude of the data is changed, since we need
chi-squared statistics with large degrees of freedom. So let us sim-
ply change the units to parts per two billion, multiplying each data
point by two. In this case, the most probable rate parameter is
given by

1, %
M, = o= Xass (284] = 450

And the upper tolerance limit is given by the smallest integer k such
that
Loos 12k + 2] = 2(4.5)



Since %*[17] = 8.67 and »3(18] = 9.39, we find that [2k+2] =
18. Therefore, k = 8, and the calculated upper tolerance limit is 8
parts per two billion or 4 ppb. Thus the calculated upper tolerance
limit changed from 5 ppb in the original example to 4 ppb, using
the same data and simply changing the units. Of course, this is unac-
ceptable and demonstrates that the method is faulty.

Therefore, we can state conclusively that the methods (as cur-
rently recommended) for construction of tolerance and prediction
limits based on the Poisson distribution should not be used with con-
centration data.

Empirical Fit of the Poisson Model to Concentration Data

We have seen that a first-principles argument in favor of a
Poisson model for concentration data is seriously flawed. As a
result, statistical methods based on the Poisson distribution are
not scale invariant when applied to concentration data and should,
therefore, not be used. Gibbons (1988) makes an argument that con-
centration data with many nondetects actually fit a Poisson model
empirically, and others might argue that one could rescale data to
achieve a Poisson fit. However, Gibbons’ own data set (Gibbons
1988), consisting of 3998 nondetects and 66 detects, provides
strong evidence that concentration data are not Poisson distributed.
Gibbons fits a Poisson distribution to the 66 detects only, ignoring
the 3998 nondetects. The expected frequencies are computed
assuming that the number of nondetects is zero when, in reality, their
number is 3998. The fact is, a Poisson model does not fit Gibbons’
(1988) data. His argument is therefore inapplicable to the problem
under consideration.

With regard to rescaling observations in order to achieve a
Poisson fit, we have shown that the Poisson model and methods are
not scale invariant when applied to concentration data. Thus, dil-
ferent analysts will obtain different results unless they all rescale in
exactly the same way. In order to achieve a Poisson distribution by
rescaling, one must chose a scale factor such that the mean and van-
ance, after rescaling, are equal (at least approximately). Two
approaches present themselves in this regard. Suppose X represents
the concentration random variable. Suppose also that there exists
a positive constant ¢ such that the random variable Y = ¢ X has,
approximately, a Poisson distribution.

In the first approach for rescaling, we observe that the mean of
Y is equal to c times the mean of X. So the mean of Y may be esti-
mated as ¢ times X where X is the sample mean of the concentration
values, Also, the variance of Y may be estimated as czsx2 where s;
is the sample variance of the concentration values. Since the vari-

ance of Y should equal the mean of Y, we getc = s’% . When there
X
are nondetects, one could replace the nondetects by half the detec-

tion limit and then compute the mean and the variance of the sam-
ple concentration values. If this method is applied to the benzene
concentrations in Example 10 in the EPA guidance document (U.S.
EPA 1992) we get ¢ = 0.186. If we round this value and take
¢ =0.2, then, in order for a Poisson model to have a chance of fit-
ting the benzene data adequately, the concentrations must be
expressed in parts per 200 million. Unfortunately, it may be easily
verified that, with or without such a rescaling, the fit of a Poisson
model to data is extremely poor.

The second approach to rescaling involves the use of the
method of maximum likelihood to estimate the scale constant ¢ and
the Poisson parameter A simultaneously. Interestingly, it can be
shown that the likelihood function does not have a unique maximum
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value, So the likelihood approach does not lead 1o a useful sclution
for the rescaling problem.

Appropriate Alternative Methods

If Poisson-based methods cannot be used with concentration
data, what methods are appropriate for cases with large fractions of
nondetects? Fortunately, useful alternative methods are currently
contained in the EPA guidance. Normal prediction limits and tol-
erance limits would be the preferred alternative if a normal distri-
bution applies or can be obtained by suitable transformation.
Cohen’s or Aitcheson's adjustment are described in the EPA guid-
ance for situations in which there are fewer than 50% nondetects.
If there are between 50 and 90% nondetects, nonparametric pre-
diction or tolerance limits are recommended. EPA recommendations
notwithstanding, these methods can also be applied to data with
greater than 90% nondetects. Since the upper limit can be no
greater than the largest background observation, one cannot com-
pute limits with larger confidence levels and smaller sample sizes.
However, the fact that the nonparametric method does not extrap-
olate beyond the range of the observed data is a strength when the
normality assumption is tenuous,

For cases in which the fraction of nondetects is large, however,
the most appropriate alternatives might be those which consider only
the number or fraction of detections, not the numerical values of the
detected concentrations. These tests are based on the binomial dis-
tribution or a Poisson approximation to the binomial distribution.
A “test of proportions” described in U.S. EPA (1989) tests a null
hypothesis that the proportion of detections in the background
data (population) is equal to the proportion of detections in the com-
pliance data (population.) As we have said earlier, Poisson tolerance
or prediction limits on a future number of hits could be used when
the probability of a hit is small.

Summary and Conclusions

Tolerance and prediction limits based on the Poisson distrib-
ution have become standard recommended procedures for analyz-
ing data with large numbers of nondetects (especiatly VOCs) from
RCRA solid and hazardous waste sites. The purported advantages
of the Poisson procedures compared to other alternatives seemed
aimost too good to be tue. Unfortunately, things that seem too good
to be true usually are, and this is no exception. We have revisited
the development and application of these methods for two types of
data, counts of analytical hits and actual concentration measure-
ments. Each of these two applications was explored along two
lines of reasoning, a first-principles argument and a simple empir-
ical fit.

The application of Poisson-based methods to counts of ana-
lytical hits, including simultaneous consideration of multiple VOCs,
appears to have merit from both a first-principles and an empirical
standpoint. The concems raised by Davis and McNichols (1988)
regarding dependence between VOCs and different probabilities of
detection for different VOCs are valid. However, it follows from the
results of LeCam (1960) that when the probabilities of the events
of concern are small, the Poisson approximation is still valid, even
if the assumptions of constant p does not hold. We may expect the
approximation to be satisfactory even when the independence
assumption fails to hold, provided that the dependence is weak. The
Poisson distribution appears to fit at least some data sets of hits/scan.

On the other hand, we have shown that the Poisson distribu-
tion is not appropriate for modeling concentration data, primarily



because the variance of the distribution does not scale appropriately
with changing units of measurement. Tolerance and prediction
limits based on the Poisson distribution are not scale invaniant. While
the molecular argument of Gibbons appears to make sense, his orig-
inal argument did not consider the actual number of molecules pre-
sent in a real water sample and, therefore, did not calculate the rate
parameter, A, properly. When we perform the first principles devel-
opment correctly, we find that (1) the Poisson distribution is of no
value because the normal approximation to the exact binomial
distribution is applicable, and (2) the variance explained by the mol-
ecular argument is insignificant, by several orders of magnitude,
compared to actual sample-to-sample variance since it does not con-
sider measurement and other sources of error.

There are serious practical problems associated with using
the Poisson-based limits with concentration data. By changing the
units of observation in example problems drawn from EPA guidance,
we demonstrated that use of the Poisson-based tolerance and pre-
diction limits can result in significant errors. In short, neither the
Poisson distribution nor associated tolerance or prediction limits
should be used with concentration data.

Thus, the logical alternatives for situations in which the frac-
tion of nondetects is large appear to be (1) the nonparametric tol-
erance or prediction limits currently recommended in EPA guidance
in which the largest observation establishes the limit for most
practical sample sizes, or (2) methods based on the binomiat dis-
tribution (also described in EPA guidance) such as a test of pro-
portions or Poisson tolerance and prediction limits on the number
of hits.
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